a2 United States Patent

Gahinet et al.

US009280146B2

(10) Patent No.: US 9,280,146 B2
(45) Date of Patent: Mar. 8, 2016

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(60)

(1)

(52)

MULTI-MODEL, MULTI-OBJECTIVE
TUNING OF CONTROL SYSTEMS

Applicant: The MathWorks, Inc., Natick, MA
us)

Inventors: Pascal Gahinet, Hopkinton, MA (US);
Pierre Apkarian, Toulouse (FR)

Assignee: The MathWorks, Inc., Natick, MA
us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 367 days.

Appl. No.: 13/800,581
Filed: Mar. 13,2013

Prior Publication Data

US 2013/0197677 Al Aug. 1, 2013

Related U.S. Application Data

Continuation-in-part of application No. 13/026,823,
filed on Feb. 14, 2011, now Pat. No. 8,606,375, and a
continuation-in-part of application No. 13/456,698,
filed on Apr. 26, 2012, now Pat. No. 9,158,291.

Provisional application No. 61/714,380, filed on Oct.
16, 2012.

Int. Cl1.

GO5B 13/02 (2006.01)

GO5B 13/04 (2006.01)

H04B 17/391 (2015.01)

HO04B 7/04 (2006.01)

U.S. CL

CPC GO5B 13/021 (2013.01); GO5B 13/042

(2013.01); GO5SB 13/047 (2013.01);, H04B
17/391 (2015.01); H04B 7/0417 (2013.01)

700

(58) Field of Classification Search
CPC .. GO5B 13/021; GOS5B 13/042; GO5B 13/047,
HO04B 17/391; HO04B 7/0417
USPC oot 700/37, 50-55
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,438,430 B1* 82002 Martinetal.c.c..... 700/28
6,631,299 B1* 10/2003 Pateletal.cccocenenns 700/37
(Continued)
OTHER PUBLICATIONS

Scherer et al., “Muliobjective Output-Feedback Control via LMI
Optimization”, iEEE, 1997, pp. 896-911.*
(Continued)

Primary Examiner — Robert Fennema
Assistant Examiner — Thomas Stevens
(74) Attorney, Agent, or Firm — Harrity & Harrity, LLP

(57) ABSTRACT

A device receives a control system model that includes a fixed
portion that models elements of a control system to be con-
trolled and a tunable portion that models elements of the
control system used to control the elements modeled by the
fixed portion. The device receives information that identifies
a tunable parameter of the tunable portion of the control
system model, a hard constraint associated with the control
system model, and a soft constraint associated with the con-
trol system model. The hard constraint identifies a first con-
straint that is to be satisfied, and the soft constraint identifies
a second constraint that is to be reduced. The device calcu-
lates a parameter value for the tunable parameter by applying
an optimization algorithm to the control system model, based
on the control system model, the tunable parameter, the hard
constraint, and the soft constraint. The device provides the
parameter value.

20 Claims, 14 Drawing Sheets

i ,
i ¥
31
7220
730 CO = Hiblock.pid(C''pi): % tunable PI 740
731 a=realp{a.1), % filter coefficient 8
732 FO=tia,[1al); % fiiter parameterized by a Joug swiech

733 LSU = loopswitch{'u');

734 TO =feedback(G*LSU*CO,F0); % closed-loop transfer fromrtoy

735 TO.InputName ='r;
736 T0.QutputName =y’

’,/47

US 9,280,146 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

7,400,933 B2* 7/2008 Rawlings GOSB 13/048
700/28
7,647,213 B1* 1/2010 Gahinetetal. 703/2
7,738,975 B2* 6/2010 Denison et al. .. 700/29
7,890,198 B1* 2/2011 Gahinetcco.... 700/31
8,467,888 B2* 6/2013 Gahinet GO5B 11/42
700/30
8,504,175 B2* 82013 Pekaretal. 700/29
2003/0018399 Al* 1/2003 Havener GO5B 17/02
700/28
2003/0028266 Al* 2/2003 Jacques 700/32
2004/0117766 Al* 6/2004 Mehta et al. . L 717/121
2006/0112382 Al* 5/2006 Glassetal. .. 717/168
2008/0172212 Al* 7/2008 Gabhinet et al. ... 703/6
2009/0112335 Al* 4/2009 Mehta et al. . .. 700/29
2010/0204808 Al* 82010 Thielec.ccoeviinininn 700/30
2012/0035748 Al 2/2012 Gabhinet et al.
2012/0177135 Al* 7/2012 Gahinet et al. 375/260
OTHER PUBLICATIONS

Gabhinet et al.,“Software for Modeling and Analysis of Linear Sys-
tems with Delays”, IEEE, 2004, pp. 5600.*

Copy of PCT Notification of Transmittal of the International Search
Report and the Written Opinion of the International Searching
Authority issued for International Application No. PCT/US2013/
063837, Jan. 16, 2014, 13 pages.

Bakir et al.: “An improved finite element model updating method by
the global optimization technique ’Coupled Local Minimizers”,
Computers and Structures, vol. 86 (2008), pp. 1339-1352,
XP022654672.

Wang et al.: “Progressive finite element model calibration of a long-
span suspension bridge based on ambient vibration and static mea-
surements”, Engineering Structures, vol. 32, No. 9, Sep. 2010, pp.
2546-2556, XP027204300.

Apkarian et al.: “Fixed-order Hoo control design via a partially aug-
mented Lagrangian method”, International Journal of Robust and
Nonlinear Control, Oct. 2003, pp. 1137-1148, XP055094905.
Michael Trick: “Chapter 4: Constrained Optimization”, Aug. 1998,
pp. 43-p. 55, XP0550949Q4. Retrieved from the Internet: URL:
http://mat.gsia.cmu.edw/classes/QUANT/NOTES/chap4.pdf.
Modak et al.: “Model Updating Using Constrained Optimization”,
Pergamon Mechanics Research Communications, Aug. 2000, pp.
543-551, XP055095109.

* cited by examiner

US 9,280,146 B2

Sheet 1 of 14

Mar. 8, 2016

U.S. Patent

l "Old

ao1neQ
iesn

{

Jopow 8y} uy
pesn 8q 0] SanjeA Jsjeuweied

[apouwl
8y} 40} SILIBIISUOD
1OS Joypue pieH

siojaweled sjgeun;
UIIM jOPOUL UIB)SAS [01JU0D)

US 9,280,146 B2

Sheet 2 of 14

Mar. 8, 2016

U.S. Patent

(1744

(301) swuosAul
Bunndwion (eoIuyde |

0ce
80IN8(] JBAIRG

¢ '9Old

ove
}JOMIBN

0ze

(301) wewuoiauz
Bunndwon feouyds |

(3] ¥4
80IN0(489S

US 9,280,146 B2

Sheet 3 of 14

Mar. 8, 2016

U.S. Patent

0l¢

aoBLBIU|
UOIJEDIUNUILLIOT

€ 9Old

9¢

wsuodwon
dino

GE

usuodwon
induyj

(144
301

(73

aoinaqg obelio1g

(]
)
[ap]

Aowspy

0ce

J08S$8001d

>/. oie

sng

¥— 00¢

US 9,280,146 B2

Sheet 4 of 14

Mar. 8, 2016

U.S. Patent

¥ "Old

US 9,280,146 B2

Sheet 5 of 14

Mar. 8, 2016

U.S. Patent

G 'Old

069

\g/

m senjea Jejaweled ay) apinoid

sisjoweled
ajqeuN] U} 10} son|eA Jalsweled a)elaual 0} UIBASUOD
LOS BU} JO/pUE JUIBIISUOD piey 8y} UO paseq ‘{apow
t9)sAs j0U0D ayy 0} wiyuobie uoneziwndo ue Alddy

0ovs

japouw
Wia)sAs [04U0D BY} YIIM PBIEIDOSSE JUIRIISUOD JOS B JO/puUR 0€S
JWIRNSUOD PIBY B SaUNuspi 18Y) UOHRWIOIUI SAIS09Y

\‘/

SpOW WBISAS jO4U0D 8
m lop 15AS |013U00 8L -

0 sisloweied ajgeun) SaLNUaPI! Byl UCIIBULIOJUI SAIS09Y

\S/

m WS)SAS |OJJUOD B JO [SPOW B BAIS08Y 0LS

\5/

US 9,280,146 B2

Sheet 6 of 14

Mar. 8, 2016

U.S. Patent

9 'Old
sjuawinbiy nduy sjuawnbiy 1ndingo
oe Tozs N
r N NN N
(suondo ‘sbaypieH ‘sbayuosg ‘01S)eunisAs = [oui‘pieHb ‘yos) ‘15]
819 919 19 Z2l9 8¢9 9¢9 1258 2€9

US 9,280,146 B2

Sheet 7 of 14

Mar. 8, 2016

U.S. Patent

v. Old

")
(A = sweNIndinO0L 9¢/
-4, = sweNInduj'gl 6g4
A 014 woyj Jejsuel) dool-pesopP % (04°00.NST.OMMoeqpas = 0L $€Z
- (n)yowmsdooj = NST €€
e Aq pezuoloweled Joyi o, (e Ll'e =04 zel
oYL Bl % (L'e)desi=e g/
X id eiqeuny o, (id, 0 pidyoojan =00 0¢L
J
0zZL
Y— 002

US 9,280,146 B2

Sheet 8 of 14

Mar. 8, 2016

U.S. Patent

654

FASYA

d ™\
“ €0+961°€ = mln
"NNS.o =13 ‘$0L00°0 = d¥ 5_3_
- s _
| i+ O,
| P _
I -
b e o e e e et e . |mv._
sielewesed ajqeuni jje jo sanjea pauny ¢, (|)sjgRUniMoys gg/
| 92€9°0 LOvE| = Yos)
Yosy 99/
T |G = suonele)j Ju- = PIeH ‘Ge'| = YOS ‘jeuld |
| 20-21 punog Jamoj 0} asod Si /0-9| diel Aedap Uiy _
G et} 081 = suoneia) ‘Juj- = pieH ‘¢0+98.'Z = YOS jeuld
| 0l = suojessy ‘Juj- = pJeH 'L9'Z = YOS jeuld |
! /Gl = Suofesdy ‘Juj- = pieH ‘GE'| = YOS leuld |
| e e e e e e e e e e o
(suondQ'[zbaytbay]'oL)eunmsAs = [oju)'~yosy' 1l p62
(g peigwiopuey JsuondoounisAs = suondg £G4
(s¥'9' n)suibiepy jeonbulun = gbey g6z
{100°0' A’ 4)Buppoei] eoobuiun] = L bay LG/
. J

ks

US 9,280,146 B2

Sheet 9 of 14

Mar. 8, 2016

U.S. Patent

\

A =AoL =001 628
{1'D.ST.OM0RqPe8; = 01 $¢8
{n)youmsdooj = g7 €78

(id o pid oo =0 Z28
(ot'foL-¢ 1-I's-Mdz=9 128
J/

028

0i8

¥Y— 008

US 9,280,146 B2

Sheet 10 of 14

Mar. 8, 2016

U.S. Patent

A%

08

I T T ez =D v L = dyuimg
| |
- X !
_ = D+ O
| b |
FIIIIIIIIIIIIIIIIIME
id 400-1 % (1 L)8igeunimoys |48
> 9z| = SuONesdll /96660 = PIEH ‘26 L = 4OS ‘feui|
([zd 1dl'ed'o)eumsAs = L1 6€8
{z' A/ J)Bupjoed] jeonbulun] = ¢ 8€8
Bupjoely o
'sfomeydie = uojenUSIYUIN'ZY L£8
‘g =eyde 9¢g
50 0l = snoo4'zy ge8
{syom’,n)uonosfeyeonbulun) =2y $£8
uonoslas esueqimsiq %
{stp' A dueneonbulung = 1y ¢£8
HO-Jj0d pue yipimpueg %
Aousnbauy Janossolo 1o0ie) 9, (L = oM ZEQ
(sp=s 1¢£8

0¢e8

¥— 008

US 9,280,146 B2

Sheet 11 of 14

Mar. 8, 2016

U.S. Patent

V6 'Old

T wRe mg

,,,,,,,,,,,,,, B

FIRUPRHEL SRS

Py
puasay

A R -

i

wonse Kby
D%

SHUTUBYCS
unndey

& &

Ly

Ragh RSy

BTG i

SERLE

016

US 9,280,146 B2

Sheet 12 of 14

Mar. 8, 2016

U.S. Patent

a6 "Old

»_” J
abeino uolojie Uo| pue JOJeAdB 1B % "L 0L 0L
abeino uolaje Ya| pue JojeAse WYBLI % L0 L L O
abeno uoiepe Wbu pue doensE B % L L0 L O
abeno uolajie Jybii pue JOeABIB Y81 % L L 00)
abeno uosee 48| % L0 L L L
abeyno uotepe ybLi o L L0 L L
afeno Jojeasip Yol % L L L O L
abeno yoyersia WUBLI 9, L L L L O
apouwl jeuonelado jeulou 9%, L L L L L

] =sosensbeing 7z6

{yesnyiuele|o] nelslsAs usdo 1z

J

{

026

US 9,280,146 B2

Sheet 13 of 14

Mar. 8, 2016

U.S. Patent

06 'Old

{9'¢)s010Z = XM

‘(g)ehe =1y
‘01 = poadgisno 9¢6

‘6:Z = SI9PONINOPIEH

{108, ,bm,)eouelep leonbuiun = InOpJey
suonipuod abeno 1oj Juswsinbal UoNBIAS|IR 1SN % GE6

'} = S|OPO LONPIEH

H{z0°0'.9, .Bbm)eoueuep eoDbBulLn| = WONPIEH
Juawainbas uoneiAsye 1snb [eUILION % $E6

soLBUs2s 8beIno 9, ‘6:Z = S|9POW INOUOS

([“(nm'zren)Berpyig

‘{n, 8.} Juiodiss Jeoueue p\pajybiapy [eonbuiun | = InOYoOg
suoiipuoo obeno Joj Juawaainbal Bupppel] 9%, €26

[9POW [RUILLIOU %, (| = S|OPOW WONYOS

(I {(nm‘omn)Beipyig

{n/ 2.} Julodies JaoueLeApajyBiopneogbuiun | = WONYOS
yjuswiannbal Buppel) jeUullloN % ZSE
{e)ohe = np (IS 0z OLl)BeIp = O 1€6

0¢6

¥— 006

US 9,280,146 B2

Sheet 14 of 14

Mar. 8, 2016

U.S. Patent

Sv6

Ev6

ae 'Oid

‘(WoNpJeH WoNyos (1)0 L)aunishs = [pieHB'yosy 1]

pug
s ({{in: @) {.bm Juiodyes Jisysuel L OpeB 1S = ()04
({01 M} Yelosyiuelsio [1ney Jejqeun | js = | S
! (:Y)sasenabeinp = abeine

LiL=16 = Jo}

0l iesjo

14%)

A%

L6

06

US 9,280,146 B2

1
MULTI-MODEL, MULTI-OBJECTIVE
TUNING OF CONTROL SYSTEMS

RELATED APPLICATION

This application claims priority under 35 U.S.C. §119
based on U.S. Provisional Patent Application No. 61/714,
380, filed on Oct. 16, 2012, the content of which is incorpo-
rated by reference herein in its entirety. This application is
also a continuation-in-part of U.S. patent application Ser. No.
13/026,823, filed on Feb. 14, 2011, the content of which is
incorporated by reference herein in its entirety. This applica-
tion is also a continuation-in-part of U.S. patent application
Ser. No. 13/456,698, filed on Apr. 26, 2012, the content of
which is incorporated by reference herein in its entirety.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an overview of an example imple-
mentation described herein;

FIG. 2 is a diagram of an example environment in which
systems and/or methods described herein may be imple-
mented;

FIG. 3 is a diagram of example components of one or more
devices of FIG. 2;

FIG. 4 is a diagram of an example control system model;

FIG. 5 is a flow chart of an example process for generating
parameter values for a control system model;

FIG. 6 is a diagram of example program code for generat-
ing parameter values for a control system model;

FIGS. 7A and 7B are diagrams of an example implemen-
tation relating to the process shown in FIG. 5;

FIGS. 8A and 8B are diagrams of another example imple-
mentation relating to the process shown in FIG. 5; and

FIGS. 9A-9D are diagrams of yet another example imple-
mentation relating to the process shown in FIG. 5.

DETAILED DESCRIPTION

The following detailed description of example implemen-
tations refers to the accompanying drawings. The same ref-
erence numbers in different drawings may identify the same
or similar elements.

A designer of a control system may create a mathematical
model of the control system to analyze performance of the
control system under various system constraints. Such analy-
sis of the control system may assist the designer in designing
acontrol system that provides maximum performance subject
to the constraints. However, the designer may have difficulty
constructing or analyzing a model of the control system when
the control system can be described using several different
models, or when the control system is subject to multiple
constraints, some of which may be flexible (soft) and some of
which may be inflexible (hard). Implementations described
herein may assist a control system designer in designing a
control system that may be described according to different
models, and that may be subject to flexible and inflexible
constraints.

FIG. 1 is a diagram of an overview of an example imple-
mentation 100 described herein. As shown in FIG. 1, a user
(e.g., a control system designer) may create a control system
model that includes tunable parameters. The control system
model (sometimes referred to herein as “a model” or “the
model”) may describe, for example, elements of the control
system, an interaction between elements of the control sys-
tem, a transfer function that describes how outputs of the
control system are generated from inputs to the control sys-

10

15

20

25

30

35

40

45

50

55

60

65

2

tem, and/or parameters of the control system that affect the
operation or behavior of the control system. The user may
identify parameters of the control system that may be tuned
(adjusted), referred to herein as tunable parameters. The con-
trol system model and information that identifies the tunable
parameters may be input to a user device.

The user may also input, to the user device, hard constraints
and/or soft constraints for the control system model. A hard
constraint may refer to an inflexible constraint that the control
system must satisfy. A soft constraint may refer to a flexible
constraint, such as a minimization or maximization of a
parameter value. Based on the control system model, the
tunable parameters, and the hard and/or soft constraints, the
user device may determine parameter values for the tunable
parameters that maximize performance of the control system
subject to the constraints. The user device may apply the
determined parameter values to the control system model,
and may simulate the model using the parameter values.

FIG. 2 is a diagram of an example environment 200 in
which systems and/or methods described herein may be
implemented. As shown in FIG. 2, environment 200 may
include a user device 210, which may include a technical
computing environment (TCE) 220. Furthermore, environ-
ment 200 may include a server device 230, which may include
TCE 220, and a network 240. Devices of environment 200
may interconnect via wired connections, wireless connec-
tions, or a combination of wired and wireless connections.

User device 210 may include a device capable of receiving,
creating, processing, and/or providing information associ-
ated with a model, such as a control system model. For
example, user device 210 may include a computing device
(e.g., a desktop computer, a laptop computer, a tablet com-
puter, a handheld computer, a server, etc.), a mobile phone
(e.g., a smart phone, a radiotelephone, etc.), or a similar
device. In some implementations, user device 210 may
receive information from and/or transmit information to
server device 230 (e.g., information associated with a control
system model).

User device 210 may host TCE 220. TCE 220 may include
any hardware-based logic or a combination of hardware and
software-based logic that provides a computing environment
that allows tasks to be performed (e.g., by users) related to
disciplines, such as, but not limited to, mathematics, science,
engineering, medicine, and business. TCE 220 may include a
text-based environment (e.g., MATLAB® software), a
graphically-based environment (e.g., Simulink® software,
Stateflow® software, SimEvents® software, etc., by The
MathWorks, Inc.; VisSim by Visual Solutions; LabView® by
National Instruments; etc.), or another type of environment,
such as a hybrid environment that may include, for example,
a text-based environment and a graphically-based environ-
ment.

In some implementations, the text-based environment may
include a dynamically typed language that may be used to
express problems and/or solutions in mathematical notations.
For example, the text-based environment may use an array as
a basic element, where the array may not require dimension-
ing. These arrays may be used to support array programming
in that operations can apply to an entire set of values, such as
values in an array. Array programming may allow array-based
operations to be treated as a high-level programming tech-
nique or model that lets a programmer think and operate on
whole aggregations of data without having to resort to explicit
loops of individual non-array, i.e., scalar operations.

Server device 230 may include one or more devices
capable of receiving, storing, processing, and/or transmitting
information associated with a model, such as a control system

US 9,280,146 B2

3

model. For example, server device 230 may include a com-
puting device, such as a server, a desktop computer, a laptop
computer, a tablet computer, a handheld computer, or a simi-
lar device. In some implementations, server device 230 may
host TCE 220.

Network 240 may include one or more wired and/or wire-
less networks. For example, network 240 may include a cel-
Iular network, a public land mobile network (“PLMN”), a
local area network (“LLAN”), a wide area network (“WAN™),
a metropolitan area network (“MAN”), a telephone network
(e.g., the Public Switched Telephone Network (“PSTN™)), an
ad hoc network, an intranet, the Internet, a fiber optic-based
network, and/or a combination of these or other types of
networks.

The number of devices and/or networks shown in FIG. 2 is
provided as an example. In practice, there may be additional,
fewer, different, or differently arranged devices and/or net-
works than those shown in FIG. 2. Furthermore, two or more
devices shown in FIG. 2 may be implemented within a single
device, or a single device shown in FIG. 2 may be imple-
mented as multiple, distributed devices. Additionally, one or
more of the devices of environment 200 may perform one or
more functions described as being performed by another one
or more devices of environment 200.

FIG. 3 is a diagram of example components of a device
300, which may correspond to user device 210 and/or server
device 230. In some implementations, each of user device 210
and/or server device 230 may include one or more devices
300 and/or one or more components of device 300. As shown
in FIG. 3, device 300 may include a bus 310, a processor 320,
amemory 330, a storage device 340, an input component 350,
an output component 360, and a communication interface
370.

Bus 310 may include a path that permits communication
among the components of device 300. Processor 320 may
include a processor (e.g., a central processing unit, a graphics
processing unit, an accelerated processing unit, etc.), a micro-
processor, and/or any processing logic (e.g., a field-program-
mable gate array (FPGA), an application-specific integrated
circuit (ASIC), etc.) that interprets and/or executes instruc-
tions. Memory 330 may include a random access memory
(RAM), a read only memory (ROM), and/or another type of
dynamic or static storage device (e.g., a flash, magnetic, or
optical memory) that stores information and/or instructions
for use by processor 320.

Storage device 340 may store information and/or software
related to the operation and use of device 300. For example,
storage device 340 may include a hard disk (e.g., a magnetic
disk, an optical disk, a magneto-optic disk, a solid state disk,
etc.), a compact disc (CD), a digital versatile disc (DVD), a
floppy disk, a cartridge, a magnetic tape, and/or another type
of computer-readable medium, along with a corresponding
drive. In some implementations, storage device 340 may store
TCE 220.

Input component 350 may include a component that per-
mits a user to input information to device 300 (e.g., a touch
screen display, a keyboard, a keypad, a mouse, a button, a
switch, etc.). Output component 360 may include a compo-
nent that outputs information from device 300 (e.g., a display,
a speaker, one or more light-emitting diodes (LEDs), etc.).

Communication interface 370 may include a transceiver-
like component, such as a transceiver and/or a separate
receiver and transmitter, that enables device 300 to commu-
nicate with other devices, such as via a wired connection, a
wireless connection, or a combination of wired and wireless
connections. For example, communication interface 370 may
include an Ethernet interface, an optical interface, a coaxial

10

15

20

25

30

35

40

45

50

55

60

65

4

interface, an infrared interface, a radio frequency (RF) inter-
face, a universal serial bus (USB) interface, or the like.

Device 300 may perform various operations described
herein. Device 300 may perform these operations in response
to processor 320 executing software instructions included in
a computer-readable medium, such as memory 330 and/or
storage device 340. A computer-readable medium may be
defined as a non-transitory memory device. A memory device
may include memory space within a single physical storage
device or memory space spread across multiple physical stor-
age devices.

Software instructions may be read into memory 330 and/or
storage device 340 from another computer-readable medium
or from another device via communication interface 370.
When executed, software instructions stored in memory 330
and/or storage device 340 may cause processor 320 to per-
form one or more processes described herein. Additionally, or
alternatively, hardwired circuitry may be used in place oforin
combination with software instructions to perform one or
more processes described herein. Thus, implementations
described herein are not limited to any specific combination
of hardware circuitry and software.

The number of components shown in FIG. 3 is provided as
an example. In practice, device 300 may include additional,
fewer, different, or differently arranged components than
those shown in FIG. 3. Additionally, or alternatively, one or
more components of device 300 may perform one or more
functions described as being performed by another one or
more components of device 300.

FIG. 4 is a diagram of an example control system model
400, which may be created, received, stored, processed, and/
or provided by user device 210 and/or server device 230.
Control system model 400 may include a fixed portion (H)
410, a tunable portion (B) 420 (which may include tunable
parameters B;, B, ..., B,), aninput signal (w) 430, an output
signal (z) 440, a feedback signal (y) 450 (which may include
feedback signals y,, v, . . . , Ya), and a control signal (u) 460
(which may include control signals u;, u,, . . ., Uy).

Control system model 400 may include a model of a physi-
cal system to be controlled and/or the actuators that are used
to physically interact with the physical system. Examples of
physical systems that may be modeled by control system
model 400 may include motors, robots, machinery, etc.
Examples of actuators that may be modeled by control system
model 400 include valves, pistons, relays, etc. In some imple-
mentations, control system model 400 may include a graphi-
cally-based model (e.g., a block diagram model), and/or a
text-based model (e.g., a matrix model). Additionally, or
alternatively model 400 may represent a linear time-invariant
system.

Fixed portion 410 may represent elements of model 400
that are fixed (e.g., non-tunable) and/or interconnections
between the fixed elements. The fixed elements may include,
for example, actuators, sensors, and/or other non-tunable ele-
ments. When control system model 400 is represented in
mathematical terms, fixed portion 410 may represent terms of
model 400 that have fixed coefficients. In some implementa-
tions, fixed portion 410 may include a state space model, a
frequency response data model, and/or a matrix model.

Tunable portion 420 may represent tunable (e.g., adjust-
able) elements of model 400, and/or interconnections
between the tunable elements. The tunable parameters may
include, for example, filters, compensators, dampers, attenu-
ators, amplifiers, etc. When control system model 400 is
represented in mathematical terms, tunable portion 420 may
represent terms of model 400 that have variable coefficients.
Tunable portion 420 may include tunable parameters

US 9,280,146 B2

5
B,,..., By, asshownin FIG. 4. In some implementations, the
tunable parameters may be represented as a diagonal matrix,
in which matrix elements outside of the main diagonal are
Zero:

Bl ... 0O

In some implementations, user device 210 may convert
control system model 400 and/or tunable portion 420 into the
above diagonal matrix representation, regardless of the type
of control architecture or the nature of the control elements in
control system model 400.

Control system model 400 may receive input signal 430,
and may generate output signal 440 based on input signal 430.
In some implementations, fixed portion 410 and/or tunable
portion 420 may act on input signal 430 to generate output
signal 440. Additionally, or alternatively, fixed portion 410
may generate feedback signal 450, which may be equivalent
to output signal 440 in some implementations. Tunable por-
tion 420 may receive feedback signal 450, and may generate
control signal 460 based on feedback signal 450. For
example, feedback signal 450 may represent an error associ-
ated with output signal 440, and control signal 460 may
compensate for the error. In this manner, tunable portion 420
may measure a behavior of an element of fixed portion 410
(e.g., via feedback signal 450), and may transmit control
signal 460 to the element to adjust the behavior. For example,
control signal 460 may be combined with input signal 430.
The combined signal may be input to fixed portion 410, which
may generate output signal 440 based on the combined signal.

In some implementations, input signal (w) 430, output
signal (z) 440, feedback signal (y) 450, and/or control signal
(u) 460 may be represented as vectors and/or matrices (e.g.,
diagonal matrices). For example, signals 430-460 may be
represented as follows:

w=[wy, ..., wyl
z=[zy, ... 74]
u=fuy, . ..yl
= ywls

where X=z1,Y=1, and Nz1.

Control system model 400 may include a closed loop,
where tunable portion 420 adjusts input signal 430 (e.g., via
control signal 460) based on feedback signal 450. In some
implementations, control system model 400 may include an
open loop, where tunable portion 420 generates an open loop
signal, inputto fixed portion 410, based solely on information
not received from fixed portion 410. In some implementa-
tions, control system model 400 may include a combination
of closed loops and open loops.

The number of elements, signals, and parameters shown in
FIG. 4 is provided as an example. In practice, control system
model 400 may include additional, fewer, different, or differ-
ently arranged elements, signals, and/or parameters than
those shown in FIG. 4.

FIG. 5 is a flow chart of an example process 500 for gen-
erating parameter values for a control system model. In some
implementations, one or more process blocks of FIG. 5 may
be performed by user device 210. In some implementations,
one or more process blocks of FIG. 5 may be performed by

10

20

25

30

35

40

45

50

55

60

65

6

another device or a group of devices separate from or includ-
ing user device 210, such as server device 230.

As shown in FIG. 5, process 500 may include receiving a
model of a control system (block 510). For example, user
device 210 (e.g., TCE 220) may receive a request, from a user
of user device 210, to access the model, such as control
system model 400. The request may include information
identifying model 400, such as a name of model 400, and
information identifying a memory location at which model
400 is stored. The memory location may be located within
user device 210 or external to, and possibly remote from, user
device 210. User device 210 may, based on receiving the
request, retrieve model 400 from the memory location. In
some implementations, user device 210 may provide, for
display, a user interface that depicts all or a portion of model
400. Model 400 may include a model of a control system that
auser wants to analyze, such as a circuit, an amplifier, a filter,
a mixer, an oscillator, or the like.

In some implementations, model 400 may be represented
as a block diagram model created using user device 210
and/or another device. Additionally, or alternatively, model
400 may be represented as a linear time-invariant (LTT) model
(e.g., a nmumeric LTT model, a generalized LTI model, a gen-
eralized state-space model, etc.) created using user device
210 and/or another device. Model 400 may describe, for
example, elements of the control system, an interaction
between elements of the control system, a transfer function
that describes how output signal 440 is generated from input
signal 430 and/or other signals, a transfer function that
describes how control signal 460 is generated from feedback
signal 450 and/or other signals, and/or parameters of the
control system that affect the operation or behavior of the
control system.

In some implementations, the control system model,
received by user device 210, may include a representation of
multiple models 400, such as models of a control system with
an element experiencing different degrees of degradation
and/or operating at different performance levels. The repre-
sentation of multiple models 400 may be represented, for
example, as an array (e.g., a vector and/or a matrix) of mul-
tiple model objects.

As shown in FIG. 5, process 500 may include receiving
information that identifies tunable parameters of the control
system model (block 520). For example, user device 210 may
receive, from a user and/or another device, information that
identifies tunable parameters of control system model 400
(e.g., tunable portion 420). In some implementations, the user
may specify the tunable parameters by specifying one or
more elements (e.g., blocks) of model 400 (e.g., a block
diagram model). For example, user device 210 may receive
program code that specifies a parameter “a” as a tunable
parameter. The program code may include the following syn-
tax:

a=realp(‘a’,10).

This syntax may designate an object a as a tunable parameter
with an initial value of 10.

User device 210 may receive additional program code to
create a block that represents a low-pass filter with tunable
parameter a, such as:

F=tfla,[1a)).

In this example, F represents a low-pass filter modeled by the
equation F=a/(s+a), where a represents a tunable parameter of
the low-pass filter. In some implementations, user device 210
may receive information that identifies additional blocks, and
may combine the additional blocks with the low-pass filter

US 9,280,146 B2

7

block to create control system model 400 with one or more
tunable and/or non-tunable parameters.

As further shown in FIG. 5, process 500 may include
receiving information that identifies a hard constraint and/or
a soft constraint associated with the control system model
(block 530). For example, user device 210 may receive, from
auser and/or another device, information that identifies a hard
constraint and/or a soft constraint. A hard constraint may refer
to an inflexible constraint that the control system must satisfy.
A soft constraint may refer to a flexible constraint, such as a
minimization or maximization of a parameter value. When
model 400 includes multiple models, a constraint may apply
to all of the models or a subset of the models (e.g., a subset
specified by a user). In some implementations, the constraints
may include closed-loop constraints and/or open-loop con-
straints. Closed-loop constraints may apply to a subset of the
elements of the closed-loop model (e.g., modeled by transfer
function T(s)). Open-loop constraints may be applicable to
any element of the model.

The hard and/or soft constraints may include, for example,
a setpoint tracking requirement (e.g., input via a Tuning-
Goal. Tracking object), a disturbance rejection requirement
(e.g., input via a TuningGoal.Rejection object), a limit on
overshoot in a step response (e.g., input via a Tuning-
Goal.Overshoot object), a limit on transfer function gain
(e.g., using H-infinity techniques, input via a Tuning-
Goal.Gain object), a limit on frequency-weighted transfer
function gain (e.g., input via a TuningGoal. WeightedGain
object), a limit on signal variance amplification (e.g., using
H-2 techniques, input via a TuningGoal.Variance object), a
limit on frequency-weighted variance amplification (e.g.,
input via a TuningGoal. WeightedVariance object), a mini-
mum gain for open-loop response (e.g., input via a Tuning-
Goal MinLoopGain object), a maximum gain for open-loop
response (e.g., input via a TuningGoal.MaxLoopGain
object), a target shape for open-loop response (e.g., input via
a TuningGoal . LoopShape object), a limit on sensitivity of a
single-input single-output (SISO) or multiple-input multiple-
output (MIMO) loop (e.g., input via a TuningGoal.Sensitivity
object), a minimum stability margin for a SISO or MIMO
loop (e.g., input via a TuningGoal Margins object), a con-
straint on closed-loop dynamics (e.g., input via a Tuning-
Goal.Poles object), a constraint on controller dynamics (e.g.,
input via a TuningGoal.StableController object), and/or
another type of constraint.

The hard and/or soft constraint may include, for example,
a constraint on the gain of a transfer function (e.g., a relation-
ship between an output signal and an input signal) associated
withmodel 400. For example, the hard constraint may include
limiting the gain of the transfer function at or below a par-
ticular threshold value (e.g., a normalized value of 1), and
may be represented as:

sy Zt)ll<1

where w(s) represents a weighting function specifying the
maximum gain as a function of frequency, and T (s) repre-
sents a transfer function associated with a closed loop j of
model 400, which may be represented as an array of transfer
functions [T,(s), . . ., T,(s)]. The soft constraint may include
minimizing the gain of the transfer function, and may be
represented as:

F=ws) ™ (s)lbs

where f)(x) represents a j-th soft constraint of a set of soft
constraints [f;(x), . . . £(x)].

20

40

45

55

65

8

In some implementations, the constraint on the gain of the
transfer function may be input as program code, via a Tun-
ingGoal.Gain object, with the following properties:

Class: TuningGoal.Gain
Purpose: Minimize or limit the gain of a transfer function T(s):
Soft: fi(x) = Hw(s)’lTj(s)H00
Hard: |lw(s) ' Ty(s)ll,, < 1

Properties Meaning

Input Input channels of Ty(s) relative to overall closed-loop model

T(s) (specified by name)

Output Output channels of Ty(s) relative to overall closed-loop model
T(s)

MaxGain Weighting function w(s)specifying the maximum gain as a
function of frequency.
This weighting function may be, for example, stored as a
zero-pole-gain (e.g., “ZPK”) model and can be specified as
a constant value or a frequency response data (e.g., “FRD”)
model with a few frequency points to outline the desired
gain profile.

Focus Frequency interval of interest (default = [0, Inf]).

Name Requirement name

Models Models to which the requirement applies (in multi-model
context). Default value NaN means “all models”

Openings Loop openings to be enforced when evaluating this

requirement

As another example, the hard and/or soft constraint may
include a constraint on the gain of a weighted multiple-input
and multiple-output (MIMO) transfer function associated
withmodel 400. For example, the hard constraint may include
limiting the gain of the weighted MIMO transfer function at
or below a particular threshold value (e.g., anormalized value
of'1), and may be represented as:

[72.(5) T{() Wr(s)l|<1

where W,(s) represents a left weighting function (e.g., a
weighting function applied to the multiple inputs) specitying
the maximum gain as a function of frequency, Wy(s) repre-
sents a right weighting function (e.g., a weighting function
applied to the multiple outputs) specifying the maximum gain
as a function of frequency, and T (s) represents a transfer
function associated with a closed loop j of model 400. The
soft constraint may include minimizing the gain of the
weighted MIMO transfer function, and may be represented
as:

SO LT WRES)er

where f)(x) represents a j-th soft constraint of a set of soft
constraints [f;(X), . . . £x)].

In some implementations, the constraint on the gain of the
weighted MIMO transfer function may be input as program
code, via a TuningGoal.WeightedGain object, with the fol-
lowing properties:

Class: TuningGoal WeightedGain
Purpose: Minimize or limit the gain of a MIMO transfer function Tj(s):
Soft: f;(x) = IW () T}(s)Wg(s)ll,,
Hard: |[W; ()T {(s)Wa(sill,, <1

Properties Meaning

Input Input channels of Ty(s) relative to overall closed-loop model
T(s)

Output Output channels of Ty(s) relative to overall closed-loop model
T(s)

Focus Frequency interval of interest (default = [0, Inf]).

WL Left weighting function (e.g., of a state space model)

WR Right weighting function (e.g., of a state space model)

US 9,280,146 B2

9

-continued

Class: TuningGoal. WeightedGain
Purpose: Minimize or limit the gain of a MIMO transfer function Tj(s):
Soft: £,(x) = IW ()T (s)Wz(s)ll,,

Hard: |[W; ($)T{(s)Wx(s)ll,, <1
Properties Meaning
Name Requirement name
Models Models to which the requirement applies (in multi-model
context). Default value NaN means “all models”
Openings Loop openings to be enforced when evaluating this

requirement

As another example, the hard and/or soft constraint may
include a constraint on a tracking error (e.g., a difference
between an output signal and an input signal) associated with
model 400. For example, the hard constraint may include
limiting the tracking error at or below a particular threshold
value (e.g., a normalized value of 1), and may be represented
as:

Iws) ™' (I=T <1

where w(s) represents a weighting function specifying the
maximum tracking error as a function of frequency (e.g., a
gain from a reference signal to an error signal), and T,(s)
represents a transfer function associated with a closed loop j
of'model 400. The soft constraint may include minimizing the
tracking error, and may be represented as:

S@=wE ™ A=)
where (x) represents a j-th soft constraint of a set of soft
constraints [f;(x), . . . £(x)].
In some implementations, the constraint on the tracking
error may be input as program code, via a TuningGoal. Track-
ing object, with the following properties:

Class: TuningGoal. Tracking
Purpose: Minimize or constraint the tracking error
Soft: fi(x) = lw(s)™ (1 - Tis)le
Hard: |[w(s) (I = Tys))ll,, <1

Properties Meaning

Referencelnput Name of reference signals relative to overall
closed-loop model T(s)

TrackingOutput Name of tracking signals relative to overall
closed-loop model T(s)

Focus Frequency interval of interest (default = [0, Inf]).

MaxError Maximum tracking error w(s)as a function of frequency
(gain from reference signal to error signal)
This weighting function may be stored, for example, as a
ZPK model and can be specified as a constant value or an
FRD model with a few frequency points to outline the
desired gain profile.

Name Requirement name

Models Models to which the requirement applies (in multi-model
context). Default value NaN means “all models”

Openings Loop openings to be enforced when evaluating this

requirement

As another example, the hard and/or soft constraint may
include a constraint on disturbance attenuation (e.g., a distur-
bance-to-output gain) associated with model 400. For
example, the hard constraint may include limiting the distur-
bance attenuation at or below a particular threshold value
(e.g., a normalized value of 1), and may be represented as:

[w(s)Sa(s)l1

where w(s) represents a weighting function specifying the
maximum disturbance attenuation as a function of frequency

10

15

20

25

30

35

40

45

55

60

65

10

(e.g., a gain from an input signal to a feedback signal), and
S (s) represents a sensitivity function at a disturbance input of
model 400. The soft constraint may include minimizing the
disturbance attenuation, and may be represented as:

S&=w)Sa(s)eo
where f)(x) represents a j-th soft constraint of a set of soft
constraints [f;(X), . . . £(x)].

In some implementations, the constraint on disturbance
attenuation may be input as program code, via a Tuning-
Goal Rejection object, with the following properties:

Class: TuningGoal Rejection
Purpose: Maximize or ensure minimum disturbance attenuation
Soft: £(x) = [Iw(s)S 4(s) 1,
Hard: [lw(s)S (s)ll,, <1

Properties Meaning

Disturbancelnput Location where disturbance enters (may be a
registered loop switch in order to access the

sensitivity function at point of entry of the disturbance)
Frequency interval of interest (default = [0, Inf]).
Minimum disturbance attenuation factor w(s) as a
function of frequency (when compared to open-loop

behavior). Reciprocal of the attenuation factor

Focus
MinAttenuation

specifies the maximum gain of the sensitivity
function at the disturbance input.
This weighting function may be, for example, stored
as a ZPK model and can be specified as a constant
value or an FRD model with a few frequency points to
outline the desired gain profile.
Name
Models

Requirement name

Models to which the requirement applies (in multi-
model context). Default value NaN means

“all models”

Openings Loop openings to be enforced when evaluating this
requirement

As another example, the hard and/or soft constraint may
include a constraint on variance amplification of a transfer
function (e.g., stochastic gain from input to output) associated
withmodel 400. For example, the hard constraint may include
limiting the variance amplification of the transfer function at
or below a particular threshold value (e.g., anormalized value
of'1), and may be represented as:

ITs)l<a

where o represents a threshold value for the variance ampli-
fication, and T,(s) represents a transfer function associated
with a closed loop j of model 400. The soft constraint may
include minimizing the variance amplification of the transfer
function, and may be represented as:

s (2

2

where f)(x) represents a j-th soft constraint of a set of soft
constraints [f;(X), . . . £(x)].

In some implementations, the constraint on variance
amplification may be input as program code, via a Tuning-
Goal.Variance object, with the following properties:

US 9,280,146 B2

11

Class: TuningGoal.Variance
Purpose: Minimize or limit the variance amplification for the transfer
function T(s).
Soft: fi(x) = II(V/e)T;(s)ll>
Hard: [IT(s)ll; <a

Properties Meaning

Input Input channels of T (s) relative to overall
closed-loop model T(s) (specified by name)

Output Output channels of T (s) relative to overall
closed-loop model T(s)

MaxAmplification ~ Maximum variance amplification (scalar,
default = 1)

Focus Frequency interval of interest (default = [0, Inf]).

Name Requirement name

Models Models to which the requirement applies (in multi-
model context). Default value NaN means
“all models”

Openings Loop openings to be enforced when evaluating this
requirement

As another example, the hard and/or soft constraint may
include a constraint on the variance amplification of a
weighted multiple-input and multiple-output (MIMO) trans-
fer function associated with model 400. For example, the hard
constraint may include limiting the variance amplification of
the weighted MIMO transfer function at or below a particular
threshold value (e.g., a normalized value of 1), and may be
represented as:

WL () TH{s) Wr(s)]]2<1

where W,(s) represents a left weighting function (e.g., a
weighting function applied to the multiple inputs) specitying
the maximum variance amplification as a function of fre-
quency, W(s) represents a right weighting function (e.g., a
weighting function applied to the multiple outputs) specify-
ing the maximum variance amplification as a function of
frequency, and T (s) represents a transfer function associated
with a closed loop j of model 400. The soft constraint may
include minimizing the variance amplification of the
weighted MIMO transfer function, and may be represented
as:

S@=W () T Wr()ll>
where f)(x) represents a j-th soft constraint of a set of soft
constraints [f;(x), . . . £(x)].

In some implementations, the constraint on variance
amplification of a weighted multiple-input and multiple-out-
put (MIMO) transfer function may be input as program code,
via a TuningGoal. WeightedVariance object, with the follow-
ing properties:

10

15

20

30

35

40

45

50

12

-continued

Class: TuningGoal. Weighted Variance
Purpose: Minimize or limit the variance amplification for the MIMO
transfer function Tj(s).
Soft: fi(x) = W, (s)T;(s)Wr(s)l1>
Hard: [[W.(s)T,(s)Wr(s)ll, <1

Properties Meaning

Openings Loop openings to be enforced when evaluating this

requirement

As another example, the hard and/or soft constraint may
include a constraint on the shape of an open-loop gain of a
single input and single output (SISO) and/or MIMO loop
associated with model 400. In some implementations, the
constraint on the shape of the open-loop gain may be input as
program code, via a TuningGoal.LoopShape object, with the
following properties:

Class: TuningGoal.LoopShape
Purpose: Shape of the open-loop gain of SISO or MIMO feedback loops.

Properties Meaning

LoopTransfer — Locations where the loop transfer function is measured
(may be registered as loop switches)

LoopGain Desired loop shape (e.g., ZPK model)

CrossTol Tolerance on gain crossover location

LoopScaling Enable/disable automatic scaling of loop channel
(default = “on’)

Focus Frequency interval of interest (default = [0, Inf]).

Name Requirement name

Models Models to which the requirement applies (in multi-model
context). Default value NaN means “all models”

Openings Loop openings to be enforced when evaluating this

requirement

As another example, the hard constraint may include
enforcing the stability of a tunable element of the model. In
some implementations, the constraint on the stability of a
tunable element may be input as program code, via a Tuning-
Goal.StableBlock object, with the following properties:

Class: TuningGoal.StableBlock
Purpose: Constrain the dynamics of specific tunable block

Properties Meaning

Block Block name

MinDecay Minimum decay rate of block poles

MaxRate Maximum magnitude of block poles (fast dynamics)
Name Requirement name

Class: TuningGoal. Weighted Variance
Purpose: Minimize or limit the variance amplification for the MIMO
transfer function Tj(s).
Soft: fi(x) = IIW.(s)T;(s)Wg(s)ll>
Hard: [[W, ()T, (s)Wg(s)ll5 <1

Properties Meaning

Input Input channels of T(s) relative to overall closed-loop model
T (s)

Output Output channels of T(s) relative to overall closed-loop model
T (s)

Focus Frequency interval of interest (default = [0, Inf]).

WL Left weighting function (e.g., of a state space model)

WR Right weighting function (e.g., of a state space model)

Name Requirement name

Models Models to which the requirement applies (in multi-model

context). Default value NaN means “all models”

55

60

65

As another example, the hard constraint may include
enforcing the closed-loop stability of a specified loop. In
some implementations, the constraint on the stability of a
loop may be input as program code, via a TuningGoal Poles
object, with the following properties:

Class: TuningGoal.Poles
Purpose: Constrain the closed-loop poles
Properties Meaning
MinDecay Minimum decay rate of closed-loop poles
MaxRate Maximum magnitude of closed-loop poles (fast dynamics)
Name Requirement name

US 9,280,146 B2

13

-continued

Class: TuningGoal.Poles
Purpose: Constrain the closed-loop poles

Properties Meaning

Models Models to which the requirement applies (in multi-model
context). Default value NaN means “all models”

Openings Loop openings to be enforced when evaluating this

requirement

As another example, the hard and/or soft constraint may
include a constraint on specified gain and/or phase margins
associated with model 400. In some implementations, the
constraint on the specified gain and/or phase margins may be
input as program code, via a TuningGoal.Margins object,
with the following properties:

Class: TuningGoal. Margins
Purpose: Enforce specified gain and phase margins (in the

LOOPMARGIN sense)

Properties Meaning

LoopTransfer Locations where the SISO or MIMO stability margins are
assessed (loop switch locations)

GainMargin Desired gain margin

PhaseMargin ~ Desired phase margin

Focus Frequency interval of interest (default = [0, Inf]).

Name Requirement name

Models Models to which the requirement applies (in multi-model
context). Default value NaN means “all models”

Openings Loop openings to be enforced when evaluating this

requirement

As another example, the hard and/or soft constraint may
include a constraint on specified gain and/or phase margins
when allowing gain and/or phase variation at both the inputs
and outputs of fixed portion 410 of model 400. In some
implementations, the constraint on the specified gain and/or
phase margins when allowing gain and/or phase variation
may be input as program code, via a TuningGoal.ioMargins
object, with the following properties:

Class: TuningGoal.ioMargins
Purpose: Enforce specified margins allowing for gain/phase variations at
both the inputs and outputs of the plant (see MMIO in LOOPMARGIN)

Properties Meaning

Input Input points (loop switch locations)

Output Output points (loop switch locations)

GainMargin Desired gain margin

PhaseMargin ~ Desired phase margin

Focus Frequency interval of interest (default = [0, Inf]).

Name Requirement name

Models Models to which the requirement applies (in multi-model
context). Default value NaN means “all models”

Openings Loop openings to be enforced when evaluating this

requirement

As shown in FIG. 5, process 500 may include applying an
optimization algorithm to the control system model, based on
the hard constraint and/or the soft constraint, to generate
parameter values for the tunable parameters (block 540). For
example, user device 210 may apply an optimization algo-
rithm to model 400. The optimization algorithm may deter-
mine parameter values, for the tunable parameters, that sat-
isfy the hard constraints and/or the soft constraints received
by user device 210.

10

—

5

20

30

35

40

50

60

65

14

In some implementations, the optimization algorithm may
solve for x in the optimization problem:

mkaxgk x)<l1
min maxf;(x) subject to Xp <X <X,
1 m =X Xy

T(s) stable

where x represents a tunable parameter of model 400, {,(x)
represents a j-th soft constraint of a set of J (J=1) soft con-
straints [f;(x), . . . £(x)], g,(x) represents a k-th hard con-
straint of a set of K (K=1) hard constraints [g, (X), . . . Zz(X)],
X,, represents a lower bound of tunable parameter x, x,,
represents an upper bound of tunable parameter x, T(s) rep-
resents a transfer function of frequency s, and “T(s) stable”
represents a stability constraint on the transfer function (e.g.,
the transfer function T(s) must be stable).

In some implementations, the optimization algorithm may
solve for x, where x represents the set of tunable parameters,
in the following optimization problem:

minimize fix) subject to g(x)=c

where c is a real number. f(x) and g(x) may represent max-
functions of the form:
f(x)=max f(x), where i=1, . .
quantity of soft constraints;
g(x)=max g(x), where j=1, . .
quantity of hard constraints.

Individual branches f(x) and g (x) may express a variety of
closed-loop and/or open-loop requirements, including
H,-norm requirements, which may be limited to specific
frequency bands, H,-norm requirements or variance con-
straints, loop-shaping specifications (e.g., at prescribed loop-
opening sites), constraints on closed-loop dynamics, MIMO
or SISO stability margins (e.g., at specified loop-opening
sites), and/or other requirements or constraints discussed
herein.

In some implementations, the optimization problem (mini-
mize f(X) subject to g(x)=c) may be solved through a
sequence of problems P, where

. Ny and n, represents the

., 0, and n, represents the

P,: minimize, ,(x)=max {f{x),ug(x)}

where | is determined by using a bisection method. If con-
straints g(x)=c are not competing with f, then minimizing
may solve the optimization problem. Otherwise, when the
soft and hard constraints are competing, solving the optimi-
zation problem may include decreasing or increasing the
value of . (e.g., based on whether a constraint is feasible or
not), resulting in final binding constraints of g(x,,)=c.

In some implementations, the values of i may be deter-
mined as follows:

1) Initialize a lower bound ,,,,,.,=0.

2) Find a strictly feasible point g(x)<c. Stop if there is no
strictly feasible point (e.g., if a solution is infeasible).
Otherwise, go to step 3.

3) Initialize an upper bound ., =f(x)/g(x,), and set
M:(Mupper-"“'lower)/z'

4) Stop 1 IL,,,,0,~Wowe|<€, Where € is a value that repre-
sents a stopping criterion. Otherwise, solve problem P,
forx,.

5) If g(x,)>c, set W, = Otherwise, set ., =W

6) Update LW=(LL, ..., +Myow.,)/ 2 and return to step 4.

As shown in FIG. 5, process 500 may include providing the
parameter values (block 550). For example, user device 210
may provide the parameter values via a user interface and/or
may store the parameter values. In some implementations,

US 9,280,146 B2

15

user device 210 may provide the parameter values to model
400. Additionally, or alternatively, user device 210 may
execute model 400 using the parameter values.

While a series of blocks has been described with regard to
FIG. 5, the blocks and/or the order of the blocks may be
modified in some implementations. Additionally, or alterna-
tively, non-dependent blocks may be performed in parallel.

FIG. 6 is a diagram of example program code 600 for
generating parameter values for a control system model. As
shown in FIG. 6, program code 600 may include input argu-
ments 610, a function 620, and output arguments 630.

Input arguments 610 may include a model argument (ST0)
612, a soft constraint argument (SoftReqs) 614, a hard con-
straint argument (HardReqs) 616, and an options argument
(options) 618. Each input argument 610 may include an
object or an array of objects. For example, input arguments
610 may include one or more models, zero or more soft
constraints, zero or more hard constraints, and zero or more
options.

Model argument 612 may identify a model of an untuned
control system, such as control system model 400. For
example, model argument 612 may include a generalized
state space (genss) description of an untuned control system
and/or a linearized block diagram model. Model argument
612 may also identify tunable parameters of model 400.

Soft constraint argument 614 may identify one or more soft
constraints (e.g., of an optimization problem) used to gener-
ate parameter values of tunable parameters identified by
model argument 612. In some implementations, soft con-
straint argument 614 may include a vector (e.g., an array) of
soft constraints with tunable parameter values to be mini-
mized.

Hard constraint argument 616 may identify one or more
hard constraints (e.g., of an optimization problem) used to
generate parameter values of tunable parameters identified by
model argument 612. In some implementations, hard con-
straint argument 616 may include a vector (e.g., an array) of
hard constraints with tunable parameter values to be con-
strained (e.g., to satisfy a threshold value).

Options argument 618 may identify one or more options
(e.g., associated with an optimization problem and/or an opti-
mization algorithm used to solve the optimization problem)
used to generate parameter values of tunable parameters iden-
tified by model argument 612. For example the options may
include an option that specifies an output of the optimization
algorithm, a quantity of iterations of the optimization algo-
rithm, a quantity of times the optimization algorithm is to be
run (e.g., applied to an optimization problem), whether or not
to parallel process the optimization algorithm runs, a target
value and/or minimum value for a tunable parameter associ-
ated with a soft constraint, a tolerance and/or accuracy of the
target value and/or minimum value (e.g., a tolerance for ter-
minating the optimization), an expected optimal value of a
tunable parameter associated with a soft constraint, a scaling
order associated with the optimization algorithm, a minimum
decay rate of close-loop poles of model 400, a tolerance on a
decay rate of non-minimal modes associated with model 400,
or the like.

In some implementations, options may include default val-
ues, as shown in the following table:

Option name Default Meaning/purpose

Display ‘final” Controls a value output to a user interface after
optimization algorithm is complete

MaxIter 300 Maximum number of solver iterations

20

25

40

45

55

60

65

-continued
Option name Default Meaning/purpose
RandomStart 0 Number of randomized optimization

algorithm runs

UseParallel false Enable parallel processing of optimization
algorithm runs

SoftTarget 0 Target value for minimum value of soft
constraints

SoftTol le-3 Desired accuracy on minimum value of soft
constraints

SoftScale 1 Expected best value of soft constraints

ScalingOrder 0 D Scaling order

MinDecay le-6 Minimum decay rate of closed-loop poles

TolDecay le-6 Tolerance on decay rate of non-minimal modes

Uncontrollable or unobservable modes in the
marginally stable strip

IRe(s)l < TolDecay * (1 + Isl)

are considered stable.

Function 620 may identify a function (e.g., systune) that
applies an optimization algorithm to the model identified by
model argument 612, subject to the soft constraints identified
by soft constraint argument 614 and/or the hard constraints
identified by hard constraint argument 616, and based on
options identified by options argument 618. For example, the
systune function may return parameter values of the tunable
parameters that best meet the soft constraints, and subject to
satisfying the hard constraints.

Output arguments 630 may include a tuned model argu-
ment (ST) 632, an optimized soft constraint argument (fSoft)
634, an optimized hard constraint argument (gHard) 636, and
an information argument (info) 638. Each output argument
630 may include an object or an array of objects. Output
arguments 630 may be generated by applying function 620 to
input arguments 610.

Tuned model argument 632 may identify a model of a
tuned control system, such as control system model 400. For
example, tuned model argument 632 may include a general-
ized state space (genss) description of a tuned control system
and/or a linearized block diagram model. Tuned model argu-
ment 632 may also identify parameter values of tunable
parameters of model 400.

Optimized soft constraint argument 634 may identify a
best achieved soft constraint value (e.g., for each of the soft
constraints) based on applying the optimization algorithm to
the untuned model. Optimized hard constraint argument 636
may identify a best achieved hard constraint value (e.g., for
each of the hard constraints) based on applying the optimiza-
tion algorithm to the untuned model.

Information argument 638 may identify information asso-
ciated with an optimization algorithm used to generate
parameter values of tunable parameters identified by model
argument 612. For example, the information may include a
quantity of optimization runs, a quantity of iterations per-
formed during an optimization run, a best generated soft
constraint value (e.g., for each soft constraint), a best gener-
ated hard constraint value (e.g., for each hard constraint), or
the like.

FIGS. 7A and 7B are diagrams of an example implemen-
tation 700 relating to process 500 (FIG. 5). In implementation
700, assume that a user wants to optimize parameters of a
control system shown in FIG. 7A.

FIG. 7A shows a model 710 of a control system used to
position the head of a hard drive head disk assembly on a disk
track. Model 710 may include a proportional and integral
(“PI”) controller (C), a fixed portion (G), and a low-pass filter
(F). The head position (y) may be determined by the fixed
portion based on a control signal (u) input from the controller

US 9,280,146 B2

17

to the fixed portion. The controller may determine the control
signal based on an error signal (e) received by the controller.
The error signal may include a combination of a reference
signal (r), which may be input to the control system, and an
adjusted feedback signal (y,). The adjusted feedback signal
may be determined by the low-pass filter, based on the feed-
back/output signal (y) received by the low-pass filter.

In some implementations, user device 210 may build
model 710 based on program code 720 (e.g., program code
input by a user). Program code 720 may include code portions
730-736, as shown. User device 210 may execute code por-
tions 730-736 to create model 710 and to specify tunable
parameters of model 710. In example implementation 700,
assume the user wants the tunable parameters to include the
value of K, (sometimes referred to in the figures as Kp) and
K, (sometimes referred to in the figures as Ki) in the PI
controller and the value of a in the low-pass filter.

Code portion 730 may create the PI controller, and may
specify that the parameters of the PI controller (e.g., K, and
K,) are tunable parameters. Code portions 731 and 732 may
create the low-pass filter, and may specify the parameter of
the low-pass filter (e.g., “a”) as a tunable parameter.

Code portion 733 may create a loop switch in model 710, as
shown by model 740, and may specify a location for the loop
switch. A loop switch may facilitate open-loop analysis of a
control system model, and may permit a user to specify open-
loop constraints, such as desired stability margins. For
example, the following constraints may act on open-loops:
TuningGoal.Rejection constraints, TuningGoal.LoopShape
constraints, TuningGoal.Margins constraints, Tuning-
Goal.ioMargins constraints, and/or TuningGoal.StableL.oop
constraints.

Code portions 734-736 may create model 710/740 by
specifying connections between elements in the model. The
result of execution of code portions 730-736 may include
model 710/740, which may represent a generalized state
space model that depends on tunable parameters of controller
C (e.g., Ky and K,) and low-pass filter F (e.g., “a”).

FIG. 7B shows program code 750 used to specify design
requirements (e.g., constraints) of the control system mod-
eled by model 710. In implementation 700, assume that the
user wants the control system to ensure that the head position
(y) of the hard drive head disk assembly tracks the reference
signal (r) with a one millisecond response time. Code portion
751 may specify this requirement as:

Reql=TuningGoal.Tracking(‘#’, ¢ ’0.001).

Further assume that the user wants the feedback loop of
model 710 to have six (6) decibels (dBs) of gain margin and
forty-five (45) degrees of phase margin. Code portion 752
may specity this requirement as:

Req2=TuningGoal. Margins(‘u",6,45).

Note that the margins requirements applies to the open-loop
response measured at the input (u) to the fixed portion (G) of
the model, which is the location marked by the loop switch
block created using program code 720 (FIG. 7A).

Further assume that the user wants to use three random
starting points in the optimization runs to improve the
chances of calculating a globally optimal design. Code por-
tion 753 may specity this optimization algorithm option as:

Options=systuneOptions(‘RandomStart’,3).

Code portion 754 may apply the optimization algorithm to
model 710/740, created by executing program code 720. The
optimization algorithm may minimize the soft constraints
specified by code portions 751-752. In this example, assume

20

30

40

45

18

that there are no hard constraints. The optimization algorithm
may use the options specified by code portion 753. The opti-
mization algorithm may normalize the constraints so that a
constraint is satisfied when a value of the constraint is less
than one.

Executing code portion 754 (e.g., [T,fSoft,~,Info|=systune
(T0,[Req1,Req2], Options)) may return result 755. Note that
result 755 includes values for the soft constraints, but no value
(e.g., —Inf) for the hard constraints, because the optimization
algorithm did not include any hard constraints. Result 755
may also indicate a number of iterations in each optimization
run.

Executing code portion 756 (e.g., fSoft) may return result
757, which may identify the tuned value of each (soft) con-
straint. For example, result 757 (fSoft=1.3461, 0.6326) indi-
cates that the first soft constraint (e.g., the tracking constraint)
is slightly violated, as indicated by the fSoft value being
greater than 1 (e.g., 1.3461), and the second soft constraint
(e.g., the margins constraint) is satisfied, as indicated by the
fSoft value being less than 1 (e.g., 0.6326).

Executing code portion 758 (e.g., showTunable(T)) may
return result 759, which may identify the tuned values of all
tunable parameters of model 710/740. For example, result
759 indicates that the tuned value of K is 0.00104, the tuned
value of K, is 0.0122, and the tuned value of a is 3.19¢+03. A
user may use the returned values of K, K, and a to design the
control system modeled by model 710/740.

FIGS. 8A and 8B are diagrams of an example implemen-
tation 800 relating to process 500 (FIG. 5). In implementation
800, assume that a user wants to optimize parameters of a
control system shown in FIG. 8A.

FIG. 8A shows a model 810 of a control system. Model 810
may include a one degree-of-freedom (1-DOF) proportional
and integral (“PI”’) controller (C), and a fixed portion (G). The
output signal (y) may be determined by the fixed portion
based on a combined signal (u+d), which may include a
combination of a control signal (u) from the controller and a
disturbance signal (d). The controller may determine the con-
trol signal (u) based on an error signal (e) received by the
controller. The error signal may include a combination of a
reference signal (r), which may be input to the control system,
and the output signal (y).

In some implementations, user device 210 may build
model 810 based on program code 820 (e.g., program code
input by a user). Program code 820 may include code portions
821-825, as shown. User device 210 may execute code por-
tions 821-825 to create model 810 and to specify tunable
parameters of model 810. In example implementation 800,
assume the user wants the tunable parameters to include the
value of K, and K, in the PI controller.

Code portion 821 may create the fixed portion (e.g., plant
(3), which may be modeled, based on code portion 821, as:

10(s +5)

)= DG+ 26+10)

where G(s) represents the transfer function for the fixed por-
tion as a function of frequency in the s-domain.

Code portion 822 may create the PI controller, and may
specify that the parameters of the PI controller (e.g., K, and
K,) are tunable parameters. Code portion 823 may create a
loop switch in model 810 where the disturbance signal enters
the control system (e.g., between the controller and the fixed
portion). Code portions 824-825 may create model 810 by
specifying connections between elements in the model.

US 9,280,146 B2

19

Execution of code portions 821-825 may create model 810,
which may represent a generalized state space model that
depends on tunable parameters of controller C (e.g., K, and
K).
FIG. 8B shows program code 830 used to specify design
requirements (e.g., constraints) of the control system mod-
eled by model 810. In implementation 800, assume that the
user wants to control the system with a first hard constraint to
limit the bandwidth to about 1 rad/s and force a roll-off of =20
db/decade past 4 rad/s, a second hard constraint to specify the
minimum disturbance attenuation in the control bandwidth.
The second hard constraint is limited to the frequency band
[0, 0.5] rad/s, and the attenuation factor decreases as the
reciprocal of frequency (e.g., no attenuation at crossover).
Further, assume that the user wants to control the system with
a soft constraint that specifies a response time of about 2
seconds in the output (y) to step changes in (r). Execution of
code portions 831-838 may set up these constraints, with R1
representing a hard gain constraint (e.g., the first hard con-
straint), R2 representing a hard rejection constraint (e.g., the
second hard constraint), and R3 representing a soft tracking
constraint (e.g., the soft constraint).
Code portion 839 may apply the optimization algorithm to
model 810, created by executing program code 820. The
optimization algorithm may minimize the soft constraints and
satisfy the hard constraints specified by code portions 831-
838. The optimization algorithm may normalize the con-
straints so that a constraint is satisfied when a value of the
constraint is less than one.
Executing code portion 839 (e.g., T1=systune(TO, R3, [R1,
R2])) may returnresult 840. Result 840 indicates that the hard
constraints are satisfied (e.g., with a value less than 1, or
0.99967), and the soft constraint (e.g., the tracking constraint)
is slightly violated, as indicated by the Soft value being
greater than 1 (e.g., 1.52).
Executing code portion 841 (e.g., showTunable(T1)) may
return result 842, which may identify the tuned values of all
tunable parameters of model 810. For example, result 842
indicates that the tuned value of K , of controller C is 1.94, and
the tuned value of K, of controller C is 2.13. A user may use
the returned values of K, and K, to design the control system
modeled by model 810.
FIGS. 9A-9D are diagrams of yet another example imple-
mentation 900 relating to process 500 (FIG. 5). Example
implementation 900 shows an example of optimizing a con-
trol system that may operate under multiple different operat-
ing modes.
FIG. 9A shows a model 910 of a flight control system.
Assume that model 910 is a model of a fault-tolerant flight
control system of an aircraft. The aircraft may experience an
outage in an elevator actuator that controls an elevator control
surface of the aircraft, and/or may experience an outage in an
aileron actuator that controls an aileron control surface of the
aircraft. A user may want to design the flight control system to
maintain stability and meet performance and comfort require-
ments (e.g., constraints) in both normal operation and
degraded operation, where some actuators may no longer
operate.
Assume that the aircraft is modeled as a rigid 6th-order
state-space system with the following state variables:
u: x-body axis velocity
w: z-body axis velocity
q: pitch rate

v: y-body axis velocity
p: roll rate
I: yaw rate.

25

30

40

45

65

20

As shown in FIG. 9B, program code 920 may be used to set
up model 910 and various operational modes associated with
the flight control system. Code portion 921 may load flight
control system model 910 (FIG. 9A). Code portion 922 may
specify the operational modes associated with various perfor-
mance degradations (e.g., outages) of flight control system
elements (e.g., elevators and/or ailerons).

As shown in FIG. 9C, program code 930 may be used to
specify constraints associated with model 910. For example,
code portion 931 may specify weights “We” and “Wu” that
model the tuning knobs, of the flight control system, that
control responsiveness and control effort. Code portion 932
may specify a soft tracking requirement (e.g., using a cost
function) for the normal operating mode. Code portion 933
may specify a similar soft tracking requirement for the outage
scenarios, with a relaxed performance weight for We.

Code portion 934 may specify a hard requirement that
alleviates the effects of wind gusts on the aircraft when the
aircraft is operating in the normal operating mode. Code
portion 935 may specity a similar hard requirement for the
outage scenarios, with a relaxed constraint. Code portions
934 and 935 may limit the variance of the error signal (¢) due
to white noise (wg) driving the wind gust model. Code portion
936 may set up the model using a wind gust speed of 10 miles
per hour, and may initialize values for the tunable state-
feedback gain (K,, a three by six matrix), and the tunable
integrator gain (K,, a three by three matrix).

As shown in FIG. 9D, program code 940 may be used to
calculate optimal parameter values for the tunable parameters
of model 910. Code portion 941 may set up a closed loop
model for each of the nine flight conditions (e.g., one normal
operating scenario and eight outage scenarios). The resulting
generalized state-space array (T0) represents nine tunable
models with tunable parameters Ki and Kx.

Code portion 942 may be used to apply the optimization
algorithm to the normal operating mode. Execution of code
portion 942 may produce result 943. Result 943 indicates that
the hard constraint is satisfied (e.g., with a value less than 1, or
0.99662), and the minimal value of the soft constraint is 22.6.
As compared to the previous examples (FIGS. 7A-7B and
8A-8B), the value of the soft constraint in this example
(FIGS. 9A-9D) is not less than one because a goal of the
optimization algorithm is to minimize a value of the soft
constraint, which may not result in a value less than one.

Code portion 944 may be used to apply the optimization
algorithm to the outage operating modes. Execution of code
portion 944 may produce result 945. Result 945 indicates that
the hard constraint is satisfied (e.g., with a value less than 1, or
0.99987), and the minimal value of the soft constraintis 25.7.
A comparison of the results shows that performance of the
flight control system is slightly worse when the constraints
are satisfied for all operating modes (e.g., a performance
value of 25.7) than when the constraints are satisfied for only
the normal operating mode (e.g., a performance value of
22.6). A user may use the returned tunable parameter values
to design the flight control system modeled by model 910.

The foregoing disclosure provides illustration and descrip-
tion, but is not intended to be exhaustive or to limit the
implementations to the precise form disclosed. Modifications
and variations are possible in light of the above disclosure or
may be acquired from practice of the implementations.

As used herein, component is intended to be broadly con-
strued as hardware, firmware, or a combination of hardware
and software.

As used herein, program code is to be broadly interpreted
to include text-based code that may not require further pro-
cessing to execute (e.g., C++ code, Hardware Description

US 9,280,146 B2

21

Language (HDL) code, very-high-speed integrated circuits
(VHSIC) HDL(VHDL) code, Verilog, Java, and/or other
types of hardware or software based code that may be com-
piled and/or synthesized); binary code that may be executed
(e.g., executable files that may directly be executed by an
operating system, bitstream files that can be used to configure
a field programmable gate array (FPGA), Java byte code,
object files combined together with linker directives, source
code, makefiles, etc.); text files that may be executed in con-
junction with other executables (e.g., Python text files, a
collection of dynamic-link library (DLL) files with text-based
combining, configuration information that connects pre-com-
piled modules, an extensible markup language (XML) file
describing module linkage, etc.); etc. In one example, pro-
gram code may include different combinations of the above-
identified classes (e.g., text-based code, binary code, text
files, etc.). Additionally, or alternatively, program code may
include code generated using a dynamically-typed program-
ming language (e.g., the M language, a MATLAB® lan-
guage, a MATLAB-compatible language, a MATLAB-like
language, etc.) that can be used to express problems and/or
solutions in mathematical notations. Additionally, or alterna-
tively, program code may be of any type, such as a function,
a script, an object, etc., and a portion of program code may
include one or more characters, lines, etc. of the program
code.

Some implementations are described herein in conjunction
with thresholds. As used herein, satisfying a threshold may
refer to a value being greater than the threshold, more than the
threshold, higher than the threshold, greater than or equal to
the threshold, less than the threshold, fewer than the thresh-
old, lower than the threshold, less than or equal to the thresh-
old, equal to the threshold, etc.

It will be apparent that systems and/or methods, as
described herein, may be implemented in many different
forms of software, firmware, and hardware in the implemen-
tations illustrated in the figures. The actual software code or
specialized control hardware used to implement these sys-
tems and/or methods is not limiting of the implementations.
Thus, the operation and behavior of the systems and/or meth-
ods were described without reference to the specific software
code—it being understood that software and control hard-
ware can be designed to implement the systems and/or meth-
ods based on the description herein.

Even though particular combinations of features are
recited in the claims and/or disclosed in the specification,
these combinations are not intended to limit the disclosure of
possible implementations. In fact, many of these features may
be combined in ways not specifically recited in the claims
and/or disclosed in the specification. Although each depen-
dent claim listed below may directly depend on only one
claim, the disclosure of possible implementations includes
each dependent claim in combination with every other claim
in the claim set.

No element, act, or instruction used herein should be con-
strued as critical or essential unless explicitly described as
such. Also, as used herein, the articles “a” and “an” are
intended to include one or more items, and may be used
interchangeably with “one or more.” Where only one item is
intended, the term “one” or similar language is used. Further,
the phrase “based on” is intended to mean “based, at least in
part, on” unless explicitly stated otherwise.

What is claimed is:

1. A device, comprising:

one or more processors to:

receive a control system model for modeling a control
system that controls a system,

22

the control system model including:
a fixed portion that models elements of the control
system, and
a tunable portion that models elements of the con-
5 trol system used to control the elements modeled
by the fixed portion,
the fixed portion and the tunable portion interacting
with one another in a multiple-input, multiple-
output (MIMO) feedback loop configuration;
receive information that identifies a tunable parameter of
the tunable portion of the control system model;
receive information that identifies a hard constraint asso-
ciated with the control system model,
the hard constraint identifying a first constraint that is
to be satisfied;
receive information that identifies a soft constraint asso-
ciated with the control system model,
the soft constraint identifying a second constraint that
includes a value to be reduced;
calculate a parameter value for the tunable parameter by
applying an optimization algorithm to the control sys-
tem model,
the optimization algorithm including a first function
associated with the soft constraint and subject to a
second function associated with the hard con-
straint; and
provide the parameter value.

2. The device of claim 1, where the control system model
represents a plurality of models of the control system,

each of the plurality of models representing operation of

the control system under different degrees of degrada-
tion or performance; and

where the one or more processors, when calculating the

parameter value for the tunable parameter, are further to:
calculate the parameter value for the tunable parameter for
the plurality of models.

3. The device of claim 1, where at least one of the hard
constraint or the soft constraint includes at least one of:

a setpoint tracking constraint;

a disturbance rejection constraint;

a constraint on overshoot in a step response;

a constraint on gain of a transfer function;

a constraint on gain of a frequency-weighted transfer func-

tion;

a constraint on signal variance amplification;

a constraint on frequency-weighted variance amplifica-

tion;

a minimum gain constraint for an open-loop response;

a maximum gain constraint for the open-loop response;

a target shape constraint for the open-loop response;

a constraint on sensitivity of a single-input single-output

(SISO) or multiple-input multiple-output (MIMO) loop;

a minimum stability margin constraint for a SISO or

MIMO loop;

a constraint on closed-loop dynamics; or

a constraint on controller dynamics.

4. The device of claim 1, where the one or more processors,
when calculating the parameter value for the tunable param-
eter by applying the optimization algorithm, are further to:

calculate the parameter value using the optimization algo-

rithm expressed as:

10

15

20

25

30

35

40

45

50

55

min max fj(x)subject to max g¢(x) <1,
65 x o k

US 9,280,146 B2

23

where x represents the tunable parameter,

f(x) represents a j-th soft constraint of a set of soft con-
straints, the set of soft constraints including the soft
constraint, and

g,(x) represents a k-th hard constraint of a set of hard
constraints, the set ofhard constraints including the hard
constraint.

5. The device of claim 4, where the optimization algorithm:

min max f;(x)
x J

is further subject to:
X;,<X=X,,, and
T(s) stable,

where x,, represents a lower bound of the tunable param-
eter,

X,,, represents an upper bound of the tunable parameter,
and

T(s) stable represents a stability constraint on the control
system model.

6. The device of claim 1, where the one or more processors,
when calculating the parameter value for the tunable param-
eter by applying the optimization algorithm to the control
system model, are further to:

calculate the parameter value by applying the optimization
algorithm using a bisection method.

7. The device of claim 1, where the soft constraint includes

at least one of:

a gain constraint based on a first weighting function and a
transfer function associated with a closed loop of the
control system model;

a frequency-weighted gain constraint based on a second
weighting function associated with multiple inputs to
the closed loop, a third weighting function associated
with multiple outputs of the closed loop, and the transfer
function,
the second weighting function and the third weighting

function specifying a maximum gain as a function of
frequency;

a setpoint tracking constraint based on the first weighting
function and the transfer function;

a disturbance rejection constraint based on the first weight-
ing function and a sensitivity function at a disturbance
input of the control system model;

a signal variance amplification constraint based on a
threshold value and the transfer function; or

a frequency-weighted variance amplification constraint
based on a fourth weighting function associated with
multiple inputs to the closed loop, a fifth weighting
function associated with multiple outputs of the closed
loop, and the transfer function,
the fourth weighting function and the fifth weighting

function specifying a maximum variance amplifica-
tion as a function of frequency.

8. The device of claim 1, where the hard constraint includes
at least one of:

a gain constraint based on a first weighting function and a
transfer function associated with a closed loop of the
control system model;

a frequency-weighted gain constraint based on a second
weighting function associated with multiple inputs to
the closed loop, a third weighting function associated
with multiple outputs of the closed loop, and the transfer
function,

15

20

35

40

45

55

60

65

24

the second weighting function and the third weighting
function specifying a maximum gain as a function of
frequency;

a setpoint tracking constraint based on the first weighting
function and the transfer function;

a disturbance rejection constraint based on the first weight-
ing function and a sensitivity function at a disturbance
input of the control system model;

a signal variance amplification constraint based on a
threshold value and the transfer function; or

a frequency-weighted variance amplification constraint
based on a fourth weighting function associated with
multiple inputs to the closed loop, a fifth weighting
function associated with multiple outputs of the closed
loop, and the transfer function,
the fourth weighting function and the fifth weighting

function specifying a maximum variance amplifica-
tion as a function of frequency.

9. A computer-readable non-transitory medium storing

instructions, the instructions comprising:

one or more instructions that, when executed by a proces-
sor, cause the processor to:
receive a computer-executable control system model for
modeling a control system that controls a system,
the control system model including:
a fixed portion that models elements of the control
system, and
a tunable portion that models elements of the con-
trol system used to control the elements modeled
by the fixed portion,
the fixed portion and the tunable portion interacting
with one another in a multiple-input, multiple-
output (MIMO) feedback loop configuration;
receive information that identifies a tunable parameter of
the tunable portion of the control system model;
receive information that identifies:
a hard constraint associated with the control system
model,
the hard constraint identifying a first constraint that
is to be satisfied; and
a soft constraint associated with the control system
model,
the soft constraint identifying a second constraint
that includes a value to be reduced;
calculate a parameter value for the tunable parameter by
applying an optimization algorithm to the control sys-
tem model,
the optimization algorithm including a first function
associated with the soft constraint and subject to a
second function associated with the hard con-
straint; and
provide the parameter value.
10. The computer-readable non-transitory medium of

claim 9, where the control system model represents a plurality
of' models of the control system,

each of the plurality of models representing operation of
the control system under different degrees of degrada-
tion or performance; and

where the one or more instructions, that cause the proces-
sor to calculate the parameter value for the tunable
parameter, further cause the processor to:

calculate the parameter value for the tunable parameter for
the plurality of models.

11. The computer-readable non-transitory medium of

claim 9, where at least one of the hard constraint or the soft
constraint includes at least one of:

US 9,280,146 B2

25

a setpoint tracking constraint;

a disturbance rejection constraint;

a constraint on overshoot in a step response;

a constraint on gain of a transfer function;

aconstraint on gain of a frequency-weighted transfer func-

tion;

a constraint on signal variance amplification;

a constraint on frequency-weighted variance amplifica-

tion;

a minimum gain constraint for an open-loop response;

a maximum gain constraint for the open-loop response;

a target shape constraint for the open-loop response;

a constraint on sensitivity of a single-input single-output

(SISO) or multiple-input multiple-output (MIMO) loop;

a minimum stability margin constraint for a SISO or

MIMO loop;

a constraint on closed-loop dynamics; or

a constraint on controller dynamics.

12. The computer-readable non-transitory medium of
claim 9, where the one or more instructions, that cause the
processor to calculate the parameter value for the tunable
parameter by applying the optimization algorithm, further
cause the processor to:

calculate the parameter value using the optimization algo-

rithm expressed as:

min max fj(x)subject to mkax grx) <1,
x

where x represents the tunable parameter,

f(x) represents a j-th soft constraint of a set of soft
constraints, the set of soft constraints including the
soft constraint, and

g,(x) represents a k-th hard constraint of a set of hard
constraints, the set of hard constraints including the
hard constraint.

13. The computer-readable non-transitory medium of
claim 12, where the optimization algorithm:

min max f;(x)
x J

is further subject to:
X;,<X=X,,, and
T(s) stable,

where x,, represents a lower bound of the tunable param-
eter,

X, represents an upper bound of the tunable parameter,
and

T(s) stable represents a stability constraint on the control
system model.

14. The computer-readable non-transitory medium of
claim 9, where at least one of the hard constraint or the soft
constraint includes at least one of:

a gain constraint based on a first weighting function and a
transfer function associated with a closed loop of the
control system model;

a frequency-weighted gain constraint based on a second
weighting function associated with multiple inputs to
the closed loop, a third weighting function associated
with multiple outputs of the closed loop, and the transfer
function,

26

the second weighting function and the third weighting
function specifying a maximum gain as a function of
frequency;

a setpoint tracking constraint based on the first weighting

5 function and the transfer function;

a disturbance rejection constraint based on the first weight-
ing function and a sensitivity function at a disturbance
input of the control system model;

a signal variance amplification constraint based on a

10 threshold value and the transfer function; or

a frequency-weighted variance amplification constraint
based on a fourth weighting function associated with
multiple inputs to the closed loop, a fifth weighting
function associated with multiple outputs of the closed

15 loop, and the transfer function,

the fourth weighting function and the fifth weighting func-
tion specifying a maximum variance amplification as a
function of frequency.

15. A method, comprising:

20 receiving a control system model for modeling a control
system that controls a system,
the control system model including:

a fixed portion that models elements of the control
system, and

25 a tunable portion that models elements of the control

system used to control the elements modeled by the
fixed portion,
the receiving the control system model being performed
by a device;

30 receiving information that identifies a tunable parameter of
the tunable portion of the control system model,
the receiving information that identifies the tunable

parameter being performed by the device;

receiving information that identifies:

35 a hard constraint associated with the control system

model,
the hard constraint identifying a first constraint that is
to be satisfied, and
a soft constraint associated with the control system
40 model,
the soft constraint identifying a second constraint that
includes a value is be reduced,
the receiving the information being performed by the
device;

45 calculating a parameter value for the tunable parameter by
applying an optimization algorithm to the control sys-
tem model,
the optimization algorithm including a first function

associated with the soft constraint and subject to a
50 second function associated with the hard constraint,
and
the calculating being performed by the device; and
providing the parameter value,
the providing being performed by the device.
55 16. The method of claim 15, where the control system
model represents a plurality of models of the control system,
each of the plurality of models representing operation of
the control system under different degrees of degrada-
tion or performance; and

60 where calculating the parameter value for the tunable
parameter further comprises:

calculating the parameter value for the tunable parameter
for the plurality of models.

17. The method of claim 15, where at least one of the hard

65 constraint or the soft constraint includes at least one of:

a setpoint tracking constraint;

a disturbance rejection constraint;

US 9,280,146 B2

27

a constraint on overshoot in a step response;

a constraint on gain of a transfer function;

aconstraint on gain of a frequency-weighted transfer func-

tion;

a constraint on signal variance amplification;

a constraint on frequency-weighted variance amplifica-

tion;

a minimum gain constraint for an open-loop response;

a maximum gain constraint for an open-loop response;

a target shape constraint for the open-loop response;

a constraint on sensitivity of a single-input single-output

(SISO) or multiple-input multiple-output (MIMO) loop;

a minimum stability margin constraint for a SISO or

MIMO loop;

a constraint on closed-loop dynamics; or

a constraint on controller dynamics.

18. The method of claim 15, where calculating the param-
eter value for the tunable parameter by applying the optimi-
zation algorithm further comprises:

calculating the parameter value using the optimization

algorithm expressed as:

min max fj(x)subject to mkax grx) <1,
x

where x represents the tunable parameter,

f(x) represents a j-th soft constraint of a set of soft
constraints, the set of soft constraints including the
soft constraint, and

g,(x) represents a k-th hard constraint of a set of hard
constraints, the set of hard constraints including the
hard constraint.

19. The method of claim 18, where the optimization algo-
rithm:

min max f;(x)
x J

10

15

20

30

35

28

is further subject to:
X;,<X=X,,, and
T(s) stable,

where x,, represents a lower bound of the tunable param-
eter,

X,,;, represents an upper bound of the tunable parameter,
and

T(s) stable represents a stability constraint on the control
system model.

20. The method of claim 15, where at least one of the hard

constraint or the soft constraint includes at least one of:

a gain constraint based on a first weighting function and a
transfer function associated with a closed loop of the
control system model;

a frequency-weighted gain constraint based on a second
weighting function associated with multiple inputs to
the closed loop, a third weighting function associated
with multiple outputs of the closed loop, and the transfer
function,

the second weighting function and the third weighting
function specifying a maximum gain as a function of
frequency;

a setpoint tracking constraint based on the first weighting
function and the transfer function;

a disturbance rejection constraint based on the first weight-
ing function and a sensitivity function at a disturbance
input of the control system model;

a signal variance amplification constraint based on a
threshold value and the transfer function; or

a frequency-weighted variance amplification constraint
based on a fourth weighting function associated with
multiple inputs to the closed loop, a fifth weighting
function associated with multiple outputs of the closed
loop, and the transfer function,

the fourth weighting function and the fifth weighting function
specifying a maximum variance amplification as a function of
frequency.

